
Computer Graphics Volume 18, Number 3 July 1984

Summed-Area Tables for Texture Mapping

Franklin C. Crow
Computer Sciences Laboratory

Xerox Palo Alto Research Center

Abstract
Texture-map computations can be made tractable through use of

precalculated tables which allow computational costs independent of the
texture density. The first example of this technique, the "mip" map, uses a
set of tables containing successively lower-resolution representations filtered
down from the discrete texture function. An alternative method using a
single table of values representing the integral over the texture function
rather than the function itself may yield superior results at similar cost. The
necessary algorithms to support the new technique are explained. Finally,
the cost and performance of the new technique is compared to previous
techniques.

CR Categories and Subject Headings: 1.3.3 [Computer
Graphics]: Picture/Image Generation - display algorithms;
1.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism - color, shading, shadowing and texture.
General Terms: Algorithms, Performance
Additional Keywords and Phrases: antialiasing, texture
mapping, shading algorithms, table lookup algorithms

1.0 Introduction

A frequent criticism of early attempts at realism in
computer-synthesized images was that the surfaces lacked
interest. At first all surfaces had a dull matte finish. Later
surfaces acquired shininess and transparency. However, much
of the attraction of real surfaces lies in the incredibly complex
local surface variations known as texture. These variations are
much too complicated to be modeled by conventional means
which require enough vertices or control points to accurately
reproduce the surface.

In 1974, Catmull [3] conceived and implemented the first
system to use images of texture applied to surfaces to give the
affect of actual texture. Blinn and Newell [1] generalized
Catmull's work and extended it to include environmental
reflections. Blinn [2] then further extended the notion (rather
spectacularly!) to achieve the appearance of undulations on
the surface (the earlier efforts achieved only flat texture, such
as the fake wood texturing found on many plastic desk tops).
Carrying things a bit farther, researchers at Ohio State [7]
experimented with various expansions of polygonal surfaces
to achieve "real" texture. Although some very interesting

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-138-5 /84 /007 /0207 $00.75

images resulted, the technique would be too cumbersome for
anything very complex.

When texture is mapped onto a surface it must be stretched
here and compressed there in order to fit the shape of the
surface. 3-D perspective views further distort texture mapped
onto a curving surface. As a digital image is synthesized, a
pair of texture coordinates must be calculated for each pixel
representing a textured surface. The most straightforward
implementation of texture mapping simply chooses the pixel
from the texture image which lies closest to the computed
texture coordinates (the "nearest pixel" algorithm). This works
well for a certain class of textures and surfaces.

A frequent example of texture mapping uses a rectangular
texture image mapped onto a sphere. Here the compression
that each part of the texture image will undergo when mapped
is known in advance. The texture can be designed in such a
way that it is "pre-stretched" along the top and bottom where
it will be mapped near the poles of the sphere. However,
unless the texture image is very smooth, with no sharp detail,
aliasing becomes an immediate problem. Sharp details will
become jagged and the texture will break up where it is highly
compressed. Where the mapping is not known in advance,
aliasing cannot be controlled just by judiciously designing the
texture.

Blinn [2] and later Feibush et al [5] discuss this problem in
detail and implemeuted good, but very expensive solutions.
If the pixel being computed is considered a small area, texture
coordinates may be computed for the corners of each such
area. The pixel intensity is then the average of all texture
elements bounded by the corners, weighted by a filter function.
In places where the texture is highly compressed (e.g., at the
poles of a sphere), this operation may require a weighted sum
of hundreds of texture values.

Catmull and Smith [4] show a way of simplifying the
calculation of the texture intensity by separating the
convolution into two passes. The method was initially applied
just to represent transformed images on a raster. A horizontal
pass over the texture is followed by a vertical pass, producing
texture values as they should appear in the image. The
simplicity of the process makes it amenable to hardware
implementation; a similar technique is currently very much
in vogue for special-effects in television. However, where the
texture is highly compressed, many texture pixels must still
be processed to yield a single image pixel.

Norton, Rockwood and Skomolski [9] report a method for
limiting texture detail to the appropriate level by expressing

207

@SIGGRAPH'84

Figure 1: Texture distortion

texture as a sum of band-limited terms of increasing
frequencies. Where the frequency of a term (i.e., its level of
detail) exceeds the pixel frequency, that term is "clamped"
(forced to the local average value for the term). The method
has been applied, in a very restricted way, but with excellent
effecL in a real-time visual system for flight simulators. In
order to use this method the texture must be divided into
terms using Fourier analysis or similar techniques.
Alternatively, the texture may be synthesized from Fourier
terms.

In a remotely similar vein, Haruyama and Barsky [8] describe
implementation of a fractal texture synthesis technique as
suggested by Fournier, Fussell, and Carpenter [6]. Fractal
synthesis has the advantage that the level of detail is controlled
very naturally. This makes antialiasing easier as the texture is
compressed on the surface. However, we are still left with no
way to handle sharp detail in a texture.

Williams [10], some time ago, conceived and directed the
implementation of a very clever algorithm which extends
practical texture mapping to a much, much larger class of
textures. Instead of using a single texture image, many images
at varying resolution are derived from the original by averaging
down to lower resolutions. Thus, in a lower resolution version
of the texture, each pixel represents the average of some
number of pixels in the higher resolution version. Since only

yt

yb

x] xr

Figure 2: Calculation of summed area from table.

under mapping.

a limited number of tables may be stored, values from two
adjacent tables must be blended to avoid obvious differences
between areas of texture represented at different resolutions.
Now where highly compressed texture must be dealt with,
computation need only determine which tables to address.
Texture computation can be more or less constant over all
pixels.

Williams calls his technique "mip" mapping (for "multum in
parvo", Latin for "many things in a small place"). Mip
mapping achieves speed at the expense of some accuracy by
assuming that texture intensity at any pixel can be adequately
represented by the average over a square region of texture.
Square regions assume that texture compression is symmetric.
However, where a surface curves away from the viewer, texture
may be compressed along only one dimension (figure 1).
Since table addressing must be based on the axis of maximum
compression, mip mapped texture may appear fuzzier than
would otherwise be necessary.

A generalization of Williams' technique can provide a better
approximation to the proper texture intensity by allowing
rectangular regions of texture to be used. A single table of
much larger numbers is used, from which a virtually
continuous range of texture densities may be drawn.

2.0 Using A Table Of Summed Areas For Texture
Mapping

2.1 The Basic Technique

Mip mapping can be done using a single table in which each
texture intensity is replaced by a value representing the sum
of the intensities of all pixels contained in the rectangle defined
by the pixel of interest and the lower left corner of the texture
image. The sum of all intensities in any rectangular area of
the texture may easily be recovered from such a table.
Dividing the sum by the area of the rectangle gives the average
intensity over the rectangle.

To find the sum of intensities over an arbitrary rectangle, it is
sufficient to take a sum and two differences of values from
the table. As an example assume that we want the sum over
an area bounded by xl on the left, xr on the right, yb on the
bottom, and yt on the top (figure 2). The sum is given by:

208

Computer Graphics Volume 18, Number 3 July 1984

T[xr, yt] - T[xr, yb] - T[xl,yt] + T[xl,yb]
where T[x,y] is the value in the table addressed by the
coordinate pair (x,y).

In other words, starting with the table entry at the upper right
corner of the area, subtract first the table entry at the lower
right then the entry at the upper left. This removes all area
below the rectangle of interest then all area to the left. Note
that the area lying below and to the left of the rectangle has
been subtracted twice. This area must be restored by adding
back in the table entry at the lower left of the rectangle.

The best approximation to the proper texture intensity would
be calculated by multiplying by a filter function superposed
over the texture rectangle before summing the intensities.
Unfortunately, since the sums must be precomputed, only a
constant filter function is possible. However, very convincingly
antialiased images are routinely made under this restriction.

As with the multiple table mip map described above, it is
necessary to interpolate between table entries to smoothly
represent sharp edges when the texture is not greatly
compressed (or when the texture is expanded). Furthermore.
if texture values are taken only at pixel locations, the resulting
discretized mapping will sometimes cause jittering as the
surface moves. More accurate mapping may be obtained by
allowing the corners of a rectangular region to lie between
texture pixels. Therefore, the summed area at each corner of
the rectangle must be calculated by interpolating from four
values in the table. Once the corner values are found, the
computation proceeds as above.

2.2 Comparisons with the Multiple Table Mip Map

To get a rough idea of the relative expense of the summed
area table mip map versus the multiple table mip map, let us
count the necessary arithmetic operations and texture accesses.
This will give us an approximation of the processing power
and bandwidth to the texture memory required. Texture
memory bandwidth is important when the texture is stored in
a frame buffer, where access may be slow, or in virtual
memory, where many accesses may substantially increase the
short-term working set size, causing excess page swapping.

For both methods, most of the cost goes into linear
interpolations. A linear interpolation costs two multiplicative
operations and two additive operations if done as:

b * (1 - alpha) + c * alpha
or, better, two additive operations and one multiplicative

operation if done as:
b + (c - b) * alpha,

where alpha is used to interpolate between b and c. A bilinear
interpolation, interpolating to a value lying within a region
defined by four adjacent pixels, requires three simple
interpolations.

The multiple map method requires two bilinear interpolations
to get a value from each of two adjacent tables, plus an
additional interpolation between the two values. This requires
a total of 8 texture accesses, 7 multiplicative operations, and
14 additive operations. The summed area table method
requires four bilinear interpolations to get the four corners of
a rectangle, then three additive operations to get the sum over
the rectangle, then a multiply to get the area and a divide to
find the average. That acids up to a total of 16 texture
accesses, 14 multiplicative operations and 27 additive
operations.

There is an optimization for the summed area method where
the texture is highly compressed. In such cases the large size
of the rectangular region from the summed area table makes
the effect of interpolation at the corners negligible. Without
interpolation, the cost of the summed area method reduces
to 4 texture accesses, two multiplicative operations and 3
additive operations.

Of course, the above is concerned only with finding the value
for the texture intensity once the texture coordinates and the
size of the texture area are known. For the multiple table
approach, the two tables must be selected and the value of
"d" (used to interpolate between the tables) calculated [10].
For the summed area table method, increments giving the
texture coordinates at the adjacent pixels may be used to
define the corners of the rectangular area. In both cases, the
necessary computation appears small next to the texture
intensity calculation.

2.3 Calculating Texture Coordinates

To be more specific, the summed area table code which
produced figures herein calculates the texture rectangle as
follows: A given scan segment is generated by linear
interpolation of the state at its endpoints. The endpoints of
a set of scan segments representing a portion of surface are
generated by linear interpolation between the endpoints of the
top and bottom segments. Since the texture coordinates are
included in the endpoint information, they are linearly
interpolated along with everything else.

The texture coordinate at a pixel is calculated by an
incremental bilinear interpolation; at each pixel, the texture
coordinates are found by adding increments to the coordinates
from the previous pixel. Those increments, which are constant
over a scan segment, are used to partially determine the texture
rectangle. Let's call them the horizontal increments.

The other necessary information is the pair of increments
needed to get the texture coordinates at the corresponding
pixel on the next scanline. Increments are kept which allow
incremental interpolation of the texture coordinates of the
endpoints of one scan segment from those of the previous
one. Using those increments at each end of a scan segment,
a pair of vertical texture coordinate increments can be
computed by incremental interpolation between the vertical
increments at the scan segment ends.

Given both horizontal and vertical texture increments at a
pixel the texture rectangle is determined by taking the
maximum of the absolute values of both x-coordinates and
similarly for the y-coordinates. This gives a sort of bounding
box on the true texture area which works quite well. Since
a rough approximation to the true texture area is all that can
be achieved using the summed area table, a more efficient
determination of the rectangle may be possible. However this
computation is only a small part of the total; any
improvements will only marginally effect total running time.

2.4 Handling Texture Image Boundaries

Since a texture map may be replicated many times over a
surface, or may cover only part of a surface, it is important to
properly handle the case where a pixel contains a texture
image boundary. In the case where a surface is only partially
covered by texture, it is sufficient to truncate texture image

209

@SIGGRAPH'84

coordinates while calculating the area ti'om the unmodified
coordinates.

Where a texture is replicated many times over a surface, values
lying to the right or above a boundary must be increased by
the value at the boundary. In extreme cases, a pixel may
contain several boundaries, implying that several whole texture
images are mapped into one pixel. This case would require
several additions to arrive at the proper values for the right
and upper corners of the rectangle.

3.0 Building And Storing A Summed Area Table

Computing the values to be stored in a summed area table is
quite simple. A table can be generated at an arithmetic cost
of two adds per entry. The most straightforward method
would be to invert the method used for taking summed areas
from the table. To get a table entry: Add the pixel intensity
to the sum at the pixel below plus the sum at the pixel to the
left. Doing this counts the sum at the pixel below and to the
left twice. Therefore, that sum must then be subtracted. The
arithmetic cost is three additive operations.

The table can be built with only two additive operations per
entry by maintaining a sum of intensities along a scanline.
Using this method, a table entry is calculated by adding the
pixel intensity to the sum for the scanline then adding that to
the sum at the pixel below. Generating the table is inexpensive
enough (for reasonably-sized texture images) that it should
not be an important consideration in deciding whether to use
a mip map technique or the more accurate (and expensive)
techniques of Blinn [2] and then Feibush et al. [5].

A potential disadvantage for the summed area table is that it
requires many more bits per entry than there are bits per
texture intensity. If the texture intensity is stored in 8 bits,
then a 1024 by 1024 entry table could require entries as long
as 28 bits. A table could be built with as little as 24 bits per
entry by restricting texture images to 256 by 256 pixels.
However, most machines handle 32-bit words more gracefully
than 24-bit words, so why restrict ourselves?

Various bit-saving techniques may be concocted to reduce the
number of bits per entry to 16 or less. For example, the
texture image may be divided into regions of 16 pixels square
to limit the sum within such a region to 16 bits (256 entries
of 8 bits each). A 32-bit quantity would be stored for each
region giving the sum at its lower left corner. To recover a
value from the table would require adding the appropriate
32-bit quantity to the table entry. Trying to reduce the number
of bits per entry to 12 yields diminishing returns. Storing a
32-bit quantity for each group of 16 entries involves an
overhead of 2 bits per entry, for an effective 14 bits per entry.

It must be noted that the multiple table mip map method
does considerably better in terms of required storage. The
number of bits per texture pixel is increased by only one-third
in preparing the table, as opposed to a factor of from two to
four for the summed area table.

4.0 Conclusions

As can be seen from figures 3-7, the summed area table works
well for antialiasing mapped texture. The egg-shaped surfaces
are polygonal approximations, which causes the apparent
creases in the texture patterns. The examples used here were
deliberately chosen to try to show any inadequacies in the
texturing techniques. Ideally the texture should roll off
smoothly into a uniform grey at the ends of the striped eggs
in figure 3. The more accurate renditions afforded by more
expensive means [2, 5] may do better in such situations.
However. nearly all images are more forgiving than the
examples used here. Such differences are most often not
visible.

A trial implementation of the multiple table mip map method
has yielded inconclusive results. Both the summed table and
multiple table methods roughly doubled the time needed to
compute an image. My decidedly non-optimized
implementation of the multiple table method runs about ten
percent slower than my implementation of the summed area
method, which would appear to contradict the implications
of section 2.2 above. Since neither implementation has been
subjected to careful scrutiny for bottlenecks, however, speed
comparisons must be considered inconclusive.

The images in figures 3-6 appear to show that the summed
area method offers some superiority in image quality over the
multiple table method. However, I would prefer independent
confirmation of that result. Both methods offer ample
opportunities for tuning. Furthermore, the multiple table
method has not really reached its potential as yet. Both
Williams' and my implementations use tables which are
generated using unweighted averages. Tables generated using
proper filtering techniques could well yield better results. On
the other hand, the summed area approach may well have
extensions allowing the use of better filters.

It should be pointed out that the general notion of recovering
the integral over a rectangular region of a function of two
variables undoubtedly has broader application than shown
here. I know of no other applications as yet, but I believe
that they must exist.

This work was made possible and pleasurable by the
incomparable facilities of the Xerox Palo Alto Research Center
and my colleagues there in imaging. All text, figures and code
development were done on a Dorado personal workstation
using the Cedar programming environment.

References

1. Blinn. J. and Newell. M., "Texture and Reflection on Computer
Generated Images", Communications of the ACM, Vol. 19, #10, Oct.
1976.

2. Blinn. J., "Computer Display of Curved Surfaces", PhD. Dissertation,
Department of Computer Science, University of Utah. December
1978.

3. Catmull, E,, "A Subdivision Algorithm for Computer Display of
Curved Surfaces", PhD. Dissertation, Department of Computer
Science, University of Utah, Tech. Report UTEC-CSc-74-133,
December 1974.

4. Catmull. E. and Smith A. R., "3-D Transformation of Images in
Scanline Order", Computer Graphics (Proc. Siggraph '80), Vol. 14.
July 1980.

210

Computer Graphics Volume 18, Number 3 July 1984

5. Feibush, E. A., Levoy, M., and Cook, R. L., "Synthetic Texturing
Using Digital Filters", Computer Graphics (Proc. Siggraph '80), Vol.
14, July 1980.

6. Fournier, A., Fussell, D., and Carpenter, L., "Computer Rendering of
Stochastic Models", Communications of the ACM, Vol. 25, #6, June
1982.

7. Hackathom, R. and Parent. R., Private Communication, 1980.
8. Haruyama, S, and Barsky, B. A., "Using Stochastic Modeling for

Texture Generation", IEEE Computer Graphics and Applications, Vol.
4, # 3, March 1984.

9. Norton, A., Rockwood, A. P., and Skomolski, P. S., "Clamping: A
Method of Antialiasing Textured Surfaces by Bandwidth Limiting in
Object Space", Computer Graphics (Proc. Siggraph '82), Vol. 16, #3,
July 1982.

10. Williams, L. "Pyramidal Parametrics", Computer Graphics, Vol. 17,
#3, July 1983.

Figure 3: Left: nearest pixel (1 min. CPU time), middle: multiple table (2 1/4 min.), right: summed table (2 min.).

Figure 4: Left: nearest pixel, middle: multiple table, right: summed table.

Figure 6: CheckerBoards showing laterally compressed texture.

211

@SIGGRAPH'84

Figure 5: CheckerBoards mapped onto a square showing vertically compressed texture.

Figure 7: CheckerBoards showing horizontally compressed texture.

212

