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Abstract 
Texture-map computations can be made tractable through use of 

precalculated tables which allow computational costs independent of the 
texture density. The first example of this technique, the "mip" map, uses a 
set of tables containing successively lower-resolution representations filtered 
down from the discrete texture function. An alternative method using a 
single table of values representing the integral over the texture function 
rather than the function itself may yield superior results at similar cost. The 
necessary algorithms to support the new technique are explained. Finally, 
the cost and performance of the new technique is compared to previous 
techniques. 

CR Categories and Subject Headings: 1.3.3 [Computer 
Graphics]: Picture/Image Generation - display algorithms; 
1.3.7 [Computer Graphics]: Three-Dimensional Graphics and 
Realism - color, shading, shadowing and texture. 
General Terms: Algorithms, Performance 
Additional Keywords and Phrases: antialiasing, texture 
mapping, shading algorithms, table lookup algorithms 

1.0 Introduction 

A frequent criticism of early attempts at realism in 
computer-synthesized images was that the surfaces lacked 
interest. At first all surfaces had a dull matte finish. Later 
surfaces acquired shininess and transparency. However, much 
of  the attraction of real surfaces lies in the incredibly complex 
local surface variations known as texture. These variations are 
much too complicated to be modeled by conventional means 
which require enough vertices or control points to accurately 
reproduce the surface. 

In 1974, Catmull [3] conceived and implemented the first 
system to use images of texture applied to surfaces to give the 
affect of actual texture. Blinn and Newell [1] generalized 
Catmull's work and extended it to include environmental 
reflections. Blinn [2] then further extended the notion (rather 
spectacularly!) to achieve the appearance of undulations on 
the surface (the earlier efforts achieved only flat texture, such 
as the fake wood texturing found on many plastic desk tops). 
Carrying things a bit farther, researchers at Ohio State [7] 
experimented with various expansions of polygonal surfaces 
to achieve "real" texture. Although some very interesting 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1984 ACM 0-89791-138-5 /84 /007 /0207  $00.75 

images resulted, the technique would be too cumbersome for 
anything very complex. 

When texture is mapped onto a surface it must be stretched 
here and compressed there in order to fit the shape of the 
surface. 3-D perspective views further distort texture mapped 
onto a curving surface. As a digital image is synthesized, a 
pair of texture coordinates must be calculated for each pixel 
representing a textured surface. The most straightforward 
implementation of texture mapping simply chooses the pixel 
from the texture image which lies closest to the computed 
texture coordinates (the "nearest pixel" algorithm). This works 
well for a certain class of textures and surfaces. 

A frequent example of texture mapping uses a rectangular 
texture image mapped onto a sphere. Here the compression 
that each part of the texture image will undergo when mapped 
is known in advance. The texture can be designed in such a 
way that it is "pre-stretched" along the top and bottom where 
it will be mapped near the poles of the sphere. However, 
unless the texture image is very smooth, with no sharp detail, 
aliasing becomes an immediate problem. Sharp details will 
become jagged and the texture will break up where it is highly 
compressed. Where the mapping is not known in advance, 
aliasing cannot be controlled just by judiciously designing the 
texture. 

Blinn [2] and later Feibush et al [5] discuss this problem in 
detail and implemeuted good, but very expensive solutions. 
If the pixel being computed is considered a small area, texture 
coordinates may be computed for the corners of each such 
area. The pixel intensity is then the average of all texture 
elements bounded by the corners, weighted by a filter function. 
In places where the texture is highly compressed (e.g., at the 
poles of a sphere), this operation may require a weighted sum 
of hundreds of texture values. 

Catmull and Smith [4] show a way of simplifying the 
calculation of the texture intensity by separating the 
convolution into two passes. The method was initially applied 
just to represent transformed images on a raster. A horizontal 
pass over the texture is followed by a vertical pass, producing 
texture values as they should appear in the image. The 
simplicity of the process makes it amenable to hardware 
implementation; a similar technique is currently very much 
in vogue for special-effects in television. However, where the 
texture is highly compressed, many texture pixels must still 
be processed to yield a single image pixel. 

Norton, Rockwood and Skomolski [9] report a method for 
limiting texture detail to the appropriate level by expressing 
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Figure 1: Texture distortion 

texture as a sum of band-limited terms of increasing 
frequencies. Where the frequency of a term (i.e., its level of 
detail) exceeds the pixel frequency, that term is "clamped" 
(forced to the local average value for the term). The method 
has been applied, in a very restricted way, but with excellent 
effecL in a real-time visual system for flight simulators. In 
order to use this method the texture must be divided into 
terms using Fourier analysis or similar techniques. 
Alternatively, the texture may be synthesized from Fourier 
terms. 

In a remotely similar vein, Haruyama and Barsky [8] describe 
implementation of a fractal texture synthesis technique as 
suggested by Fournier, Fussell, and Carpenter [6]. Fractal 
synthesis has the advantage that the level of detail is controlled 
very naturally. This makes antialiasing easier as the texture is 
compressed on the surface. However, we are still left with no 
way to handle sharp detail in a texture. 

Williams [10], some time ago, conceived and directed the 
implementation of a very clever algorithm which extends 
practical texture mapping to a much, much larger class of  
textures. Instead of using a single texture image, many images 
at varying resolution are derived from the original by averaging 
down to lower resolutions. Thus, in a lower resolution version 
of the texture, each pixel represents the average of some 
number of  pixels in the higher resolution version. Since only 
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Figure 2: Calculation of summed area from table. 

under mapping. 

a limited number of tables may be stored, values from two 
adjacent tables must be blended to avoid obvious differences 
between areas of  texture represented at different resolutions. 
Now where highly compressed texture must be dealt with, 
computation need only determine which tables to address. 
Texture computation can be more or less constant over all 
pixels. 

Williams calls his technique "mip" mapping (for "multum in 
parvo", Latin for "many things in a small place"). Mip 
mapping achieves speed at the expense of some accuracy by 
assuming that texture intensity at any pixel can be adequately 
represented by the average over a square region of texture. 
Square regions assume that texture compression is symmetric. 
However, where a surface curves away from the viewer, texture 
may be compressed along only one dimension (figure 1). 
Since table addressing must be based on the axis of maximum 
compression, mip mapped texture may appear fuzzier than 
would otherwise be necessary. 

A generalization of Williams' technique can provide a better 
approximation to the proper texture intensity by allowing 
rectangular regions of texture to be used. A single table of 
much larger numbers is used, from which a virtually 
continuous range of texture densities may be drawn. 

2.0 Using A Table Of Summed Areas For Texture 
Mapping 

2.1 The Basic Technique 

Mip mapping can be done using a single table in which each 
texture intensity is replaced by a value representing the sum 
of the intensities of  all pixels contained in the rectangle defined 
by the pixel of interest and the lower left corner of the texture 
image. The sum of all intensities in any rectangular area of 
the texture may easily be recovered from such a table. 
Dividing the sum by the area of the rectangle gives the average 
intensity over the rectangle. 

To find the sum of intensities over an arbitrary rectangle, it is 
sufficient to take a sum and two differences of values from 
the table. As an example assume that we want the sum over 
an area bounded by xl on the left, xr on the right, yb on the 
bottom, and yt on the top (figure 2). The sum is given by: 
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T[xr, yt] - T[xr, yb] - T[xl,yt] + T[xl,yb] 
where T[x,y] is the value in the table addressed by the 
coordinate pair (x,y). 

In other words, starting with the table entry at the upper right 
corner of the area, subtract first the table entry at the lower 
right then the entry at the upper left. This removes all area 
below the rectangle of  interest then all area to the left. Note 
that the area lying below and to the left of the rectangle has 
been subtracted twice. This area must be restored by adding 
back in the table entry at the lower left of the rectangle. 

The best approximation to the proper texture intensity would 
be calculated by multiplying by a filter function superposed 
over the texture rectangle before summing the intensities. 
Unfortunately, since the sums must be precomputed, only a 
constant filter function is possible. However, very convincingly 
antialiased images are routinely made under this restriction. 

As with the multiple table mip map described above, it is 
necessary to interpolate between table entries to smoothly 
represent sharp edges when the texture is not greatly 
compressed (or when the texture is expanded). Furthermore. 
if texture values are taken only at pixel locations, the resulting 
discretized mapping will sometimes cause jittering as the 
surface moves. More accurate mapping may be obtained by 
allowing the corners of  a rectangular region to lie between 
texture pixels. Therefore, the summed area at each corner of  
the rectangle must be calculated by interpolating from four 
values in the table. Once the corner values are found, the 
computation proceeds as above. 

2.2 Comparisons with the Multiple Table Mip Map 

To get a rough idea of  the relative expense of  the summed 
area table mip map versus the multiple table mip map, let us 
count the necessary arithmetic operations and texture accesses. 
This will give us an approximation of the processing power 
and bandwidth to the texture memory required. Texture 
memory bandwidth is important when the texture is stored in 
a frame buffer, where access may be slow, or in virtual 
memory, where many accesses may substantially increase the 
short-term working set size, causing excess page swapping. 

For both methods, most of the cost goes into linear 
interpolations. A linear interpolation costs two multiplicative 
operations and two additive operations if done as: 

b * (1 - alpha) + c * alpha 
or, better, two additive operations and one multiplicative 

operation if done as: 
b + (c - b) * alpha, 

where alpha is used to interpolate between b and c. A bilinear 
interpolation, interpolating to a value lying within a region 
defined by four adjacent pixels, requires three simple 
interpolations. 

The multiple map method requires two bilinear interpolations 
to get a value from each of  two adjacent tables, plus an 
additional interpolation between the two values. This requires 
a total of 8 texture accesses, 7 multiplicative operations, and 
14 additive operations. The summed area table method 
requires four bilinear interpolations to get the four corners of 
a rectangle, then three additive operations to get the sum over 
the rectangle, then a multiply to get the area and a divide to 
find the average. That acids up to a total of 16 texture 
accesses, 14 multiplicative operations and 27 additive 
operations. 

There is an optimization for the summed area method where 
the texture is highly compressed. In such cases the large size 
of  the rectangular region from the summed area table makes 
the effect of interpolation at the corners negligible. Without 
interpolation, the cost of the summed area method reduces 
to 4 texture accesses, two multiplicative operations and 3 
additive operations. 

Of  course, the above is concerned only with finding the value 
for the texture intensity once the texture coordinates and the 
size of the texture area are known. For the multiple table 
approach, the two tables must be selected and the value of  
"d" (used to interpolate between the tables) calculated [10]. 
For the summed area table method, increments giving the 
texture coordinates at the adjacent pixels may be used to 
define the corners of the rectangular area. In both cases, the 
necessary computation appears small next to the texture 
intensity calculation. 

2.3 Calculating Texture Coordinates 

To be more specific, the summed area table code which 
produced figures herein calculates the texture rectangle as 
follows: A given scan segment is generated by linear 
interpolation of  the state at its endpoints. The endpoints of  
a set of  scan segments representing a portion of  surface are 
generated by linear interpolation between the endpoints of  the 
top and bottom segments. Since the texture coordinates are 
included in the endpoint information, they are linearly 
interpolated along with everything else. 

The texture coordinate at a pixel is calculated by an 
incremental bilinear interpolation; at each pixel, the texture 
coordinates are found by adding increments to the coordinates 
from the previous pixel. Those increments, which are constant 
over a scan segment, are used to partially determine the texture 
rectangle. Let's call them the horizontal increments. 

The other necessary information is the pair of increments 
needed to get the texture coordinates at the corresponding 
pixel on the next scanline. Increments are kept which allow 
incremental interpolation of  the texture coordinates of the 
endpoints of one scan segment from those of  the previous 
one. Using those increments at each end of a scan segment, 
a pair of vertical texture coordinate increments can be 
computed by incremental interpolation between the vertical 
increments at the scan segment ends. 

Given both horizontal and vertical texture increments at a 
pixel the texture rectangle is determined by taking the 
maximum of the absolute values of both x-coordinates and 
similarly for the y-coordinates. This gives a sort of bounding 
box on the true texture area which works quite well. Since 
a rough approximation to the true texture area is all that can 
be achieved using the summed area table, a more efficient 
determination of  the rectangle may be possible. However this 
computation is only a small part of the total; any 
improvements will only marginally effect total running time. 

2.4 Handling Texture Image Boundaries 

Since a texture map may be replicated many times over a 
surface, or may cover only part of a surface, it is important to 
properly handle the case where a pixel contains a texture 
image boundary. In the case where a surface is only partially 
covered by texture, it is sufficient to truncate texture image 
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coordinates while calculating the area ti'om the unmodified 
coordinates. 

Where a texture is replicated many times over a surface, values 
lying to the right or above a boundary must be increased by 
the value at the boundary. In extreme cases, a pixel may 
contain several boundaries, implying that several whole texture 
images are mapped into one pixel. This case would require 
several additions to arrive at the proper values for the right 
and upper corners of the rectangle. 

3.0 Building And Storing A Summed Area Table 

Computing the values to be stored in a summed area table is 
quite simple. A table can be generated at an arithmetic cost 
of  two adds per entry. The most straightforward method 
would be to invert the method used for taking summed areas 
from the table. To get a table entry: Add the pixel intensity 
to the sum at the pixel below plus the sum at the pixel to the 
left. Doing this counts the sum at the pixel below and to the 
left twice. Therefore, that sum must then be subtracted. The 
arithmetic cost is three additive operations. 

The table can be built with only two additive operations per 
entry by maintaining a sum of intensities along a scanline. 
Using this method, a table entry is calculated by adding the 
pixel intensity to the sum for the scanline then adding that to 
the sum at the pixel below. Generating the table is inexpensive 
enough (for reasonably-sized texture images) that it should 
not be an important consideration in deciding whether to use 
a mip map technique or the more accurate (and expensive) 
techniques of Blinn [2] and then Feibush et al. [5]. 

A potential disadvantage for the summed area table is that it 
requires many more bits per entry than there are bits per 
texture intensity. If the texture intensity is stored in 8 bits, 
then a 1024 by 1024 entry table could require entries as long 
as 28 bits. A table could be built with as little as 24 bits per 
entry by restricting texture images to 256 by 256 pixels. 
However, most machines handle 32-bit words more gracefully 
than 24-bit words, so why restrict ourselves? 

Various bit-saving techniques may be concocted to reduce the 
number of bits per entry to 16 or less. For example, the 
texture image may be divided into regions of 16 pixels square 
to limit the sum within such a region to 16 bits (256 entries 
of 8 bits each). A 32-bit quantity would be stored for each 
region giving the sum at its lower left corner. To recover a 
value from the table would require adding the appropriate 
32-bit quantity to the table entry. Trying to reduce the number 
of bits per entry to 12 yields diminishing returns. Storing a 
32-bit quantity for each group of 16 entries involves an 
overhead of 2 bits per entry, for an effective 14 bits per entry. 

It must be noted that the multiple table mip map method 
does considerably better in terms of required storage. The 
number of bits per texture pixel is increased by only one-third 
in preparing the table, as opposed to a factor of from two to 
four for the summed area table. 

4.0 Conclusions 

As can be seen from figures 3-7, the summed area table works 
well for antialiasing mapped texture. The egg-shaped surfaces 
are polygonal approximations, which causes the apparent 
creases in the texture patterns. The examples used here were 
deliberately chosen to try to show any inadequacies in the 
texturing techniques. Ideally the texture should roll off 
smoothly into a uniform grey at the ends of the striped eggs 
in figure 3. The more accurate renditions afforded by more 
expensive means [2, 5] may do better in such situations. 
However. nearly all images are more forgiving than the 
examples used here. Such differences are most often not 
visible. 

A trial implementation of the multiple table mip map method 
has yielded inconclusive results. Both the summed table and 
multiple table methods roughly doubled the time needed to 
compute an image. My decidedly non-optimized 
implementation of the multiple table method runs about ten 
percent slower than my implementation of the summed area 
method, which would appear to contradict the implications 
of  section 2.2 above. Since neither implementation has been 
subjected to careful scrutiny for bottlenecks, however, speed 
comparisons must be considered inconclusive. 

The images in figures 3-6 appear to show that the summed 
area method offers some superiority in image quality over the 
multiple table method. However, I would prefer independent 
confirmation of that result. Both methods offer ample 
opportunities for tuning. Furthermore, the multiple table 
method has not really reached its potential as yet. Both 
Williams' and my implementations use tables which are 
generated using unweighted averages. Tables generated using 
proper filtering techniques could well yield better results. On 
the other hand, the summed area approach may well have 
extensions allowing the use of better filters. 

It should be pointed out that the general notion of recovering 
the integral over a rectangular region of a function of two 
variables undoubtedly has broader application than shown 
here. I know of no other applications as yet, but I believe 
that they must exist. 

This work was made possible and pleasurable by the 
incomparable facilities of the Xerox Palo Alto Research Center 
and my colleagues there in imaging. All text, figures and code 
development were done on a Dorado personal workstation 
using the Cedar programming environment. 
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Figure 3: Left: nearest pixel (1 min. CPU time), middle: multiple table (2 1/4 min.), right: summed table (2 min.). 

Figure 4: Left: nearest pixel, middle: multiple table, right: summed table. 

Figure 6: CheckerBoards showing laterally compressed texture. 
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Figure 5: CheckerBoards mapped onto a square showing vertically compressed texture. 

Figure 7: CheckerBoards showing horizontally compressed texture. 
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